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In biomedical research ¯elds, the in vivo °ow cytometry (IVFC) is a widely used technology
which is able to monitor target cells dynamically in living animals. Although the setup of IVFC
system has been well established, baseline drift is still a challenge in the process of quantifying
circulating cells. Previous methods, i.e., the dynamic peak picking method, counted cells by
setting a static threshold without considering the baseline drift, leading to an inaccurate cell
quanti¯cation. Here, we developed a method of cell counting for IVFC data with baseline drift by
interpolation ¯tting, automatic segmentation and wavelet-based denoising. We demonstrated its
performance for IVFC signals with three types of representative baseline drift. Compared with
non-baseline-correction methods, this method showed a higher sensitivity and speci¯city, as well
as a better result in the Pearson's correlation coe±cient and the mean-squared error (MSE).

Keywords: In vivo °ow cytometry; cell counting; baseline drift; signal processing.

1. Introduction

In the past decades, there has been a signi¯cant
step forward in the development of in vivo methods
for monitoring circulating cells. Among them, the

in vivo °ow cytometry (IVFC) is a powerful tech-
nique that provides real-time detection and quan-
titative study of target cells in circulation in live
animal models.1–6 In the °uorescence-based IVFC,
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as a °uorescently-labeled cell passes through a fo-
cused laser slit which is set across the blood vessel,
the °uorescence is excited and can be detected. No
blood drawing or sacri¯ce of animals is needed
during this process. Substantial experiments have
presented its broad applications in research areas
such as cancer metastasis,7–11 leukemia,10 apopto-
sis,12 immunology.13,14 and other biomedical appli-
cations.15–17 Combined with nanotechnology, the
speci¯city of cancer diagnostics has been greatly
improved.18–22

As the setup of IVFC has been well established,
corresponding signal processing approaches have
also been explored to study the signal features and
improve the cell counting procedure.23–25 Usually,
the IVFC data are recorded and processed with in-
house software. As the peaks in IVFC signals rep-
resent circulating cells, it is a crucial step to accu-
rately count the peak numbers. A previously used
method to count cell peak numbers is called \line-
gating" method,4 in which a line drawn manually is
needed to separate dots which represent cells from
background signals. Apparently, this \line-gating"
method consumes both time and manpower, with a
relatively low e±ciency and accuracy, thus it is
replaced by the automatic threshold approach
combined with a dynamic peak picking procedure.26

Once the peak reaches beyond the threshold given
by a formula, it would be regarded as a cell. This
method does not require any control experiments
and proves to be an e®ective method in automatic
cell peak counting of the IVFC signal.

Due to animals' respiratory movement, limb
movement and photobleaching of tissue auto-
°uorescence, the problem of baseline drift exists in
many IVFC signals. A cell peak is identi¯ed if the
intensity of the peak is above a static threshold,
which is related to the baseline level according to
previous methods.24–26 If IVFC signals with baseline
drift are analyzed automatically using the above-
mentioned automatic threshold algorithm, the
output results would be highly inaccurate. For ex-
ample, if the baseline keeps decreasing over time,
cell peaks could not be identi¯ed in the late part of
the signals if their intensities are not high enough.
Since IVFC data from a single experimental animal
are usually continuous in a long term, the baseline
drift in a time point may ruin the total signal. Thus,
new methods are needed to count cells in IVFC
signals with baseline drift. The problem of baseline
drift also exists in many other ¯elds, such as the

electrocardiogram, and corresponding methods
have been explored to tackle this problem.27–31

Here, we developed an e®ective processing method
to solve baseline drift problem in IVFC signals,
which could determine whether to smooth the
baseline, divide signal into parts and analyze them
separately. Compared with previous algorithms,
this new method could remove baseline drift in
IVFC signals automatically and shows higher ac-
curacy of cell counting.

2. Methods

2.1. IVFC data

Raw IVFC data in this work were from our previous
work, including IVFC data of studying macro-
phages and prostate cancer cells,14 hepatocellular
carcinoma cells,11,26 optical clearing,25 near infrared
IVFC data of tracking bone marrow cells and
mesenchymal stem cells.24

2.2. IVFC signal analysis

A representative IVFC signal is shown in Fig. 1,
where X-axis stands for the acquisition time of
signals, and Y -axis stands for the voltage value that
linearly re°ects the °uorescence intensity. In the
IVFC signals, the low intensity background is called
the baseline, while the high intensity pulse is de¯ned
as the peak. The baseline level is associated with
certain predictable factors, including the auto-°uo-
rescence from tissues, re°ection and scattering of
the laser and electrical noise. Each peak corresponds
to a °uorescently-labeled cell or cell cluster that is
excited by the laser beam as it °ows through the
focused laser slit across the vessel. In the peak,
height re°ects the °uorescence intensity emitted
from target cells, and peak width shows the time of
one cell °owing through the focused laser beam.

2.3. Baseline correction methods

Generally, baseline drift in IVFC signals could be
categorized into three types. The ¯rst type is noise
bandwidth change (Fig. 2(a)), where the width of
the noise band increases or decreases prominently
from a certain point. This problem is related to the
change of focal plane due to inconspicuous hyper-
spasmia, which could be solved in the post-processing
procedure by analyzing the signal separately.

X. Wang et al.
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By dividing the signal into several parts according
to the width of noise band, each part of the signal
with the same noise band width will be given a
calculated threshold for peak picking. The second
type of baseline drifting is a gentle baseline °uctu-
ation (Fig. 2(b)), in which the signal baseline °uc-
tuates slightly around the average baseline level.
This is caused mainly by the animal's normal re-
spiratory movement and photobleaching of tissue
auto-°uorescence. The third type is abrupt baseline
change, where the baseline level drifts up and
down suddenly due to the change of detection site
(Fig. 2(c)). By interpolation ¯tting and subtracting
the original signal with the estimated baseline, the
baseline could be dragged to a less °uctuating level,
thus the problem of gentle baseline °uctuation and
abrupt baseline change could be solved at the same
time.

The correction method of baseline mainly
involves three steps. The ¯rst step is interpolation
and ¯tting, through which we can get an estimated
baseline of the original signal. A less °uctuating

signal could be obtained by subtracting the signal
intensity with baseline intensity. Secondly, by
checking the intensity di®erence in the baseline
level, the algorithm will automatically decide
whether or not to segment the signal. If the signal
does not have any problem of intensity di®erence,
the algorithm will go to the ¯nal step and output
cell counting results. Otherwise, it will segment the
signal into parts. The ¯nal step is to output cell
peak numbers, involving wavelet-based denoising,
peak picking and results displaying. Flow chart of
the algorithm is shown in Fig. 3.

2.3.1. Interpolation and ¯tting

The aim of the ¯rst step is to correct the °uctuating
baseline. By setting window size and step size, a
series of points would be picked as sampling points.
The window size and step size are both set as two
points. The interpolation method is Piecewise Cubic
Hermite Interpolating Polynomial (PCHIP), which
uses a cubic Hermite interpolation and performs

(a) (b)

Fig. 1. Graphic signals of IVFC. (a) A representative IVFC signal. (b) The representative °uorescence signal pro¯le of a cell.

(a) (b) (c)

Fig. 2. Representative IVFC signals with baseline drift. (a) A signal with noise bandwidth change since 57 s. (b) A signal has the
problem of gentle baseline °uctuation. (c) An abrupt baseline change occurred at 406 s in the signal.

Cell counting for IVFC signals with baseline drift
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better than cubic spline interpolation. After ¯tting
these sampling points, an estimated baseline of the
original signal is generated. The following procedure
is subtracting the signal intensity with the new
baseline at every signal point, and those irregular
baseline drifts could be eliminated.

2.3.2. Automated segmenting

The following step is to search trip points of the
baseline, referring to points with signi¯cant inten-
sity change. By setting a threshold, the algorithm
can automatically check if there is any point whose
signal intensity di®erence of its both sides reaches
beyond the threshold, if yes, such a point is de¯ned
as a trip point. The reason why we choose to check
trip points in the interpolation-¯tted baseline rather
than in noise band of the original signal is that, in
the original signal, the most obvious signal intensity
di®erence is between a cell peak and the noise band,
rather than °uctuation in baseline, therefore, it does
not conform to the de¯nition of a trip point we
mentioned above. By checking trip points in the
interpolation-¯tted baseline, the algorithm focused
on checking signal intensity di®erence caused by

baseline drifting, thus facilitating the following
steps.

After searching for trip points, the algorithm
goes on to check if the di®erence of mean signal
intensity during a given period of time at both sides
of the trip point reaches beyond the setting
threshold. If not, the problem of the signal is just
baseline drift rather than noise bandwidth change,
and baseline drift has already been solved in the
¯rst step. If the bandwidth di®erence reaches be-
yond the threshold, the signal will be segmented
into two parts in such a trip point, which is de¯ned
as a segmenting point. The threshold that deter-
mines whether or not to segment the signal is a
value based on an empirical parameter: 0.2*mean
(Y ), where Y stands for the signal intensity. This
empirical value has been tested for a large amount
of data and proved to be a reliable value. The
threshold depends on the signal intensity, therefore
it would change for di®erent data sets. Then the
software will process the segmented two parts
separately.

Once the algorithm ¯nds a segmenting point, it
will separate the signal into two parts and process
the ¯rst part of the signal individually. However, for

Fig. 3. Flow chart of the processing method. Concrete operations of baseline correction method are described as follows: using the
interpolation ¯tting method to get a curve that is denoted as baseline level. By subtracting the original signal with the baseline level,
we can get the corrected signal with a less °uctuating baseline level. Check if there is any trip point in the corrected signal, and then
check if there is intensity di®erence between both sides of the trip point. Count cell peaks according to the formula and output
results both in ¯gure and text form.

X. Wang et al.
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some signals with severe noise bandwidth change,
whether or not there are any other segmenting
points in the second part of the signal is not certain.
Therefore, a while-loop is introduced in order to ¯nd
other segmenting points in the second part of the
separated signal by further automatic segmenting.

2.3.3. Wavelet-based denoising and peak

picking

The wavelet-based denoising processing method has
been reported previously.32 In our work, Symlet 6
was used as mother wavelets, and the wavelet de-
composition scale was 3. Procedure following
wavelet denoising is peak picking. The peak is de-
¯ned as local maximum of the signal intensity, and
one peak corresponds to one detected °uorescence-
labeled cell. The threshold is determined by the
following formula:

Threshold ¼ Medianþ Multiplier �MAD=0:6745;

ð1Þ
where \median" is the median value of the signal
intensity, which is more reasonable than mean
value; the \multiplier" is a correction coe±cient
that determines the rigor level of the threshold,
whose value is usually set as seven for general IVFC
signals. Further detailed information about multi-
plier was illustrated in our previous work.24 \MAD"
is the abbreviation for the median absolute devia-
tion of all the signal intensities, re°ecting the degree
of variation. This formula is based on the theory
that the baseline level of IVFC signals conforms to a
Gaussian distribution, thus °uorescently-labeled
peak signals are viewed as abnormal values. In
practice, if the signal intensity reaches beyond the
threshold, it would be counted as a peak candidate.
Every peak candidate would be examined further to
remove the overlapped peaks or the false positive
peaks whose peak widths are too narrow, which are
generally caused by the electrical noise.

2.3.4. Metrics

We inspected cell peak numbers using Measure
Foundry software as an assistant viewing tool. The
manually counted cell numbers were seen as true
value. Then, we compared the e±cacy by calculat-
ing Pearson's correlation coe±cient and the mean-
square error (MSE) between the true value and cell

numbers obtained by correcting baseline drift and
by the previous dynamic peak picking method.

3. Results

3.1. The baseline drift was removed

in signals with noise band width
change

The signal shown in Fig. 4(a) was a representative
signal with noise bandwidth change, where the
bandwidth decreased dramatically since 57 s. If we
adopt the previous dynamic peak picking method
(without baseline correction), the result would be
highly inaccurate. The evident noise bandwidth
change would in°uence the accuracy of auto-deter-
mination of threshold by the formula mentioned in
Eq. (1), and consequently, in°uence the accuracy of
peak picking: thousands of signals would be calcu-
lated as positive peaks within the ¯rst 57 s, while
almost no signal would be regarded as peaks from
57 s to the end (shown in Fig. S1). The original
signal shown in Fig. 4(a) was divided into two parts,
and the circles in Figs. 4(c) and 4(d) represented
recognized cells. Graphical results showed that
there were eight cell peaks in the ¯rst 57 s, instead of
thousands of peaks. In the output text ¯le which
recorded cell numbers in every minute, the cell
numbers in the ¯rst 60 s were eight, which was
veri¯ed by manually counting numbers. The sensi-
tivity was improved greatly from 35.71% by the
dynamic peak picking method to 85.71%, and the
speci¯city was improved from 99.93% to 99.99%.
For signals without baseline drift, the dynamic peak
picking method can count cell numbers with a high
accuracy. The reason why it performed with a low
sensitivity is that we have chosen the signal with
severe baseline drift, in order to illustrate the im-
portance of baseline correction. The formula used to
count sensitivity and speci¯city in this work is de-
scribed in the supplementary material.

3.2. Cell counting results became more

accurate in signals with gentle
baseline °uctuation

In a similar way, gentle baseline °uctuation caused
by animal's respiration would in°uence the deter-
mination of the threshold (Fig. 5). By using the
previous dynamic peak picking method, errors

Cell counting for IVFC signals with baseline drift
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would be in a tolerable range since the °uctuation
level was not severe. However, this new processing
method could realize the peak picking procedure
with higher accuracy. For example, some peaks

with low intensity might be omitted by previous
methods. The dash line in Fig. 5(c) represented the
calculated threshold. To verify the accuracy of this
method, the results were compared with manual

(a) (c)

(b) (d)

Fig. 4. A signal with baseline intensity change is divided into two parts and is processed separately. (a) The original signal has an
obvious baseline intensity di®erence since the end of the ¯rst minute. (b) The baseline of signal is less °uctuated after baseline
smoothing. (c) Cell peak counting result of the ¯rst signal part shows there are eight cells in the ¯rst minute. (d) The second part of
the signal after auto-segmentation shows corresponding cell counting result (Table 1).

Fig. 5. A signal with gentle baseline °uctuation is processed after correcting baseline drift. (a) The baseline level of the original
signal °uctuated irregularly. (b) The baseline of the signal is less °uctuated after correcting the drift. (c) Cell peaks after correcting
baseline drift shows the counting result of cells (Table 2).

X. Wang et al.
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counting results, which were 17 and 19 cells, sepa-
rately (Table 3). For this signal, the sensitivity was
improved from 84.21% by the dynamic peak picking
method to 89.47%.

3.3. Detecting sensitivity increased

greatly in signals with abrupt
baseline level change

Because of experimental animal's sudden movement
during data recording, the problem of abrupt
baseline level change exists in many IVFC signals
(Fig. 6(a)). If we analyze those °awed signals using

the dynamic peak picking algorithm, threshold cal-
culated by average baseline level would be highly
inaccurate: baseline level that dramatically drifted
up and down could make the accurate determination
of threshold nearly impossible (shown in Fig. S2).
The inaccurate threshold would further in°uence cell
peak counting. However, by using this method, the
overall baseline could be dragged to the same level
(Fig. 6(b)). Results of the calculated threshold and
the following peak picking procedure were reliable
(Fig. 6(c)), conforming to the manually counted cell
numbers which represented standard results. The
sensitivity was improved signi¯cantly from 0.62%
by the dynamic peak picking method to 90.06%.

Table 1. Cell count results for a signal with baseline intensity
change.

Time (min)
Average cell

counts 1 2 3 4 5 6

Without baseline
correction

237.3 1418.0 2.0 2.0 1.0 1.0 0.0

With baseline
correction

6.7 8.0 5.0 9.0 8.0 6.0 4.0

Table 2. Cell count results for a signal with gentle baseline
°uctuation.

Time (min) Average cell counts 1 2 3 4

Without baseline
correction

13.8 3.0 9.0 42.0 1.0

With baseline
correction

4.3 5.0 6.0 5.0 1.0

Table 3. Cell count results for a signal with abrupt baseline level change.

Time (min) Average cell counts 1 2 3 4 5 6 7 8 9 10

Without baseline correction 0.1 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0
With baseline correction 14.5 12.0 7.0 27.0 20.0 12.0 19.0 21.0 7.0 12.0 8.0

Fig. 6. A signal with abrupt baseline level change is processed after correcting baseline drift. (a) The baseline level of the original
signal changes at around 406 s. (b) The smoothed signal has a less °uctuating baseline level. (c) Cell peaks after correcting baseline
drift shows the counting result of cells.

Cell counting for IVFC signals with baseline drift
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3.4. Verifying the accuracy

To verify the accuracy of our method, the
Pearson correlation coe±cient R2 and the MSE
were calculated by testing 23 representative IVFC
signals with baseline drift. R2 for the baseline cor-
recting method showed a high correlation with
true value (R2 ¼ 0:996, p < 0:01), compared with
previous dynamic peak picking method which did
not correct baseline drift (correlation coe±cient
¼ �0:121, not relevant). The MSE obtained for
baseline correcting method was signi¯cantly lower
(MSE ¼ 1.452) than the dynamic peak picking
method (MSE ¼ 29.588).

4. Discussion

As the IVFC is broadening, its application in vari-
ous biomedical research areas, baseline drift in sig-
nals has become a common problem. In this study,
we introduced a new approach that could reduce
the in°uence of baseline drift in the IVFC signals
by automatically smoothing the baseline drift,
segmenting and analyzing the signal separately.
Developed and realized under MATLAB graphical
user interface (GUI) platform, this algorithm could
e®ectively solve most of the baseline drift problems
relating to noise bandwidth and baseline level.

The advantage of this processing method is that,
compared to the line-gating method or the dynamic
peak picking method, this method could detect
baseline's trip points automatically, divide the sig-
nal into parts accordingly and analyze them sepa-
rately. As the baseline level changes greatly in some
signals, previous processing methods may not be
able to identify cell peaks e®ectively by wavelet-
based denoising. Such problems could be avoided if
the baseline has been smoothed and the signal is
processed individually. This method enhances the
availability of IVFC signals for further analysis,
such as counting cell peaks, calculating blood °ow
velocity, etc. In-house software which integrates
this algorithm and other related functions is now in
use to facilitate researchers.

In Eq. (1) which de¯nes the threshold for peak
identi¯cation, the multiplier value is set as 7 usu-
ally, which is an empirical value. After being pro-
cessed by this baseline correcting method, the signal
intensity di®erence between neighboring sampling
points gets decreased, thus the MAD factor dimin-
ishes correspondingly. According to Eq. (1), the

diminished MAD factor mini¯es the cell peak
threshold, leading to inaccuracy such as counting
noise peaks as valid cell peaks. By testing and ver-
ifying the accuracy, the number of di®erent cell
peaks between this processing method and true
value was about 4–5 peaks per minute. One prac-
tical solution is to raise the multiplier value from
the original 7 to the current 10, which means that
since the processing method has been improved, the
formula's corresponding parameter also needs to be
improved.
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